Minimal graphs with prescribed vertex independence and clique numbers
نویسندگان
چکیده
The vertex independence number of a graph G is the maximal number of independent vertices in G. The clique number of G is the size of the largest complete subgraph of G. Let !1(v,n,r) denote the class of simple graphs on v vertices having vertex independence number n and clique number r. Let [(v,n,r) == min {dG): G E !1(v,n,r)}, where dG} denotes the number of edges in G, In this paper we study the class !1(v,n,r) and in particular, consider the problem of determining the function f( v, n, r ).
منابع مشابه
Vertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملClique-perfectness of complements of line graphs
The clique-transversal number τc(G) of a graph G is the minimum size of a set of vertices meeting all the cliques. The clique-independence number αc(G) of G is the maximum size of a collection of vertex-disjoint cliques. A graph is clique-perfect if these two numbers are equal for every induced subgraph of G. Unlike perfect graphs, the class of clique-perfect graphs is not closed under graph co...
متن کاملPartial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal ...
متن کاملCohen-Macaulay $r$-partite graphs with minimal clique cover
In this paper, we give some necessary conditions for an $r$-partite graph such that the edge ring of the graph is Cohen-Macaulay. It is proved that if there exists a cover of an $r$-partite Cohen-Macaulay graph by disjoint cliques of size $r$, then such a cover is unique.
متن کاملTotal domination in $K_r$-covered graphs
The inflation $G_{I}$ of a graph $G$ with $n(G)$ vertices and $m(G)$ edges is obtained from $G$ by replacing every vertex of degree $d$ of $G$ by a clique, which is isomorph to the complete graph $K_{d}$, and each edge $(x_{i},x_{j})$ of $G$ is replaced by an edge $(u,v)$ in such a way that $uin X_{i}$, $vin X_{j}$, and two different edges of $G$ are replaced by non-adjacent edges of $G_{I}$. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Australasian J. Combinatorics
دوره 3 شماره
صفحات -
تاریخ انتشار 1991